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Abstract

For a plastically anisotropic solid a plasticity model using a plastic flow rule with non-normality is applied to predict
crack growth. The fracture process is modelled in terms of a traction–separation law specified on the crack plane. A
phenomenological elastic–viscoplastic material model is applied, using one of two different anisotropic yield criteria
to account for the plastic anisotropy, and in each case the effect of the normality flow rule is compared with the effect
of non-normality. Conditions of small scale yielding are assumed, with mode I loading conditions far from the crack-
tip, and various directions of the crack plane relative to the principal axes of the anisotropy are considered. It is found
that the steady-state fracture toughness is significantly reduced when the non-normality flow rule is used. Furthermore,
it is shown that the predictions are quite sensitive to the value of the maximum angle of deviation from normality in the
non-normality flow rule.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

A plasticity model using a vertex-type plastic flow rule on a smooth yield surface for an anisotropic solid
has been proposed by Kuroda and Tvergaard (2001a). The model was proposed because of results found by
using an abrupt strain path change to determine the shape of the subsequent yield surface in the vicinity of a
current loading point (Kuroda and Tvergaard, 1999). The method was tested for polycrystal plasticity,
based on the Taylor model for either f.c.c. or b.c.c. crystal structure, and the analyses show a clear non-
normality of the small amount of plastic flow while the stress point moves along the yield surface. As
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has been discussed in detail by Kuroda and Tvergaard (1999), this apparent non-normality must be a
vertex-type effect resulting from the Taylor model, since normality of each of the slip systems involved is
an integral part of the crystal plasticity model. Also a corresponding experimental investigation for an alu-
minium alloy and a steel (Kuwabara et al., 2000) has shown a clear non-normality of the plastic strain rate
vector relative to the stress path, which is regarded as part of the current yield surface.

During crack growth in metals the plastic work in the material surrounding the crack-tip contributes sig-
nificantly to the fracture toughness, such that the macroscopic work of fracture is much larger than that of
the local fracture process near the tip. This has been studied in a number of elastic–plastic crack growth
computations (Tvergaard and Hutchinson, 1992, 1993; Tvergaard, 2001), with the local fracture process
modelled by a traction–separation law along the crack plane having a specified work of separation per unit
area and the surrounding material modelled by isotropic plasticity. This type of analysis has been used re-
cently to investigate the effect of plastic anisotropy on predicted crack growth resistance curves (Tvergaard
and Legarth, 2004).

The cause of plastic anisotropy is often texture development during large plastic straining, or in some
cases the microstructure of the solid, where e.g. inclusions elongated in a particular direction will give aniso-
tropic properties (Legarth, 2003). Some different models for anisotropic plasticity have been discussed by
Kuroda and Tvergaard (2000) in the context of sheet metal formability, and Legarth et al. (2002a,b) have
used the anisotropic yield surface of Hill (1948) to study crack-tip blunting prior to the onset of crack
growth. Legarth et al. (2002a,b) found that the plastic zones around the crack-tip show strong non-
symmetries for certain orientations of the principal axes of anisotropy relative to the crack plane.

In the crack growth analyses of Tvergaard and Legarth (2004) the anisotropic yield surface proposed by
Hill (1948) or that proposed by Barlat et al. (1991) are used, with the usual normality of the plastic flow
rule, and with the elastic–viscoplastic versions of the anisotropic material models, used in Kuroda and
Tvergaard (2000). The crack growth analyses are here extended to consider the effect of the non-normality
of the plastic flow rule found by Kuroda and Tvergaard (1999), since the vertex-type effect is expected to
significantly reduce the resistance to the non-proportional stress paths that are characteristic around the tip
of a growing crack. Apart from this, the analyses are based on the assumptions of small scale yielding as
well as straight ahead crack growth, as in Tvergaard and Legarth (2004).
2. Problem formulation

2.1. Anisotropic plasticity model with non-normality

The constitutive model to be used here is that proposed by Kuroda and Tvergaard (2001a,b). Assuming
small elastic and finite plastic deformations, the result of the Eulerian kinematics can be expressed by
D ¼ De þDp ¼ De þ _UNp

W ¼ xþWp ¼ xþ _UXp
ð2:1Þ
Here D andW are the symmetric and anti-symmetric parts of the spatial velocity gradient L (=ovi/oxjei � ej
where v is the velocity of a material particle, x is the current position and ei the Cartesian basis), the super-
scripts e and p denote elastic and plastic parts, respectively, x is the spin of the substructure, and Wp is the
plastic spin, while Xp is the direction of Wp. Here it is assumed that Wp = 0, so that W = x. The scalar-
valued quantity _U is a non-negative overstress function for rate-dependent cases or a loading multiplier
appearing as hki in rate-independent plasticity (h i are the Macauley brackets).

With the superposed o denoting an objective rate with respect to the spin x and the superposed dot
denoting a material time derivative, the elasticity relation is assumed to be given by Hooke�s law
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o ¼ _r� xrþ rx ¼ C : De ¼ C : D� _UC : Np ð2:2Þ
where r is the Cauchy stress and C is a fourth order isotropic elastic moduli tensor, determined by Young�s
modulus E and Poisson�s ratio m.

For the anisotropic plasticity considered here, orthotropic symmetry is assumed. The structure variables
to be considered are two types of quantities, the orthonormal unit vectors ni, and the equivalent plastic
strain ep. The orthonormal vectors ni are defined along the axes of orthotropy, x̂i, which evolve according
to
_ni ¼ xni ð2:3Þ

since n

o
i � 0. The stress components with respect to the orthotropic axes, x̂i, are denoted by (^), thus

r̂ij ¼ ni � r � nj for i, j = 1, 2, 3, see Fig. 1. The initial angle of orientation of plastic anisotropy is denoted
by h0.

A rate-dependent yield surface can be written as
f ¼ Jðr; ni; epÞ � KðgðepÞ; _UÞ ¼ 0 ð2:4Þ

where J is an equivalent stress for which the functional form can be motivated by a rate-independent theory
of plasticity, K is a scalar variable representing a strain-rate-sensitive stress magnitude, and g(ep) is a strain
hardening function which portrays isotropic hardening. This function is taken to follow a power law
gðepÞ ¼ r0 1þ ep

e0

� �n

ð2:5Þ
where r0 is the initial yield stress, e0 is a material constant and n is the strain hardening exponent. The J is
assumed to be pressure insensitive, i.e. oJ/or = Nn is a deviatoric quantity. From Eq. (2.4) the expression
for _U is determined as _U ¼ _UðJ ; gÞ.

The unit outward normal n to the yield surface is given by� �

n ¼ oJ

or

� �
oJ
or

��� ���
�

ð2:6Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiq
where kð�Þk ¼ tr½ð�ÞTð�Þ�. A non-linear dependence of the plastic strain rate Dp on the total strain rate D
is assumed. Introducing the notation for a deviatoric quantity, (•) 0 = (•) � (1/3)(I � I) : (•), with the unity
tensor I, a direction m normal to n is defined as
m ¼ D0 � ðn : D0Þn
kD0 � ðn : D0Þnk ð2:7Þ
Then, the direction Np of the plastic strain rate Dp is taken to be
Np ¼ nþ d̂m ð2:8Þ
Fig. 1. Definition of the orthonormal basis of plastic anisotropy.
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where d̂ is a scalar-valued function to be specified below. Then, (2.8) together with (2.1), i.e. Dp ¼ _UNp,
specifies the plasticity model with the vertex-type effect (Simo, 1987), which expresses the non-normality
of the plastic flow. The equivalent plastic strain ep is defined as
ep ¼
Z

_ep dt ¼
Z ffiffiffiffiffiffiffiffi

2=3
p

_Udt ð2:9Þ
The value of d̂ is taken to be given by (Kuroda and Tvergaard, 2001a,b,c)
d̂ ¼ tanwp; wp ¼
aw for aw 6 wp

crit

wp
crit for aw > wp

crit

(
ð2:10Þ

w ¼ cos�1 n : D0

kD0k

� �
; a ¼ 1

cg=lþ 1
ð2:11Þ
where c is a coefficient, which governs non-coaxiality between D 0 and Dp, and l = E/{2(1 + m)} is the elastic
shear modulus. The ratio l/g represents the elastic modulus normalised by the current stress level g accord-
ing to strain hardening. For usual elastic–viscoplastic materials a is close to unity, but a small deviation
from unity has a large effect on predictions of strain localization (Kuroda and Tvergaard, 2001a,c). It is
noted that when wp

crit ! 0 the present plasticity model reduces to the normality flow rule.
In the present analyses, the following strain-rate hardening law is used in Eq. (2.4)
K gðepÞ; _U
� 	

� gðepÞ
_U
_U0

� �m

ð2:12Þ
where _U0 is a material constant having the dimension of (time)�1 and m is the strain-rate sensitivity
exponent.

Plastic anisotropy is accounted for by using two different phenomenological theories, namely Hill (1948,
1950), which is quadratic in terms of the stress components, and the non-quadratic proposal by Barlat et al.
(1991), subsequently referred to as Hill-48 and Barlat-91, respectively.

For the non-associated model (2.8), in presence of anisotropy, there is the possibility that the plastic
work rate is negative, even for wp

crit < p=2. The angle wp
crit should not exceed p=2� wnr0 , where wnr0 is the

angle between the normal and the stress deviator at the current point on the yield surface. This requirement
will be satisfied for moderate intensity of anisotropy and moderate wp

crit. The maximum allowable value of
wp

crit has been calculated numerically for the particular parameter values used in the two yield criteria to be
considered here. The values are about 54� for Hill-48 and 64� for Barlat-91, and thus the value wp

crit ¼ 20� to
be used in some of the present computations is well within the limits.

Hill-48: The classical quadratic yield criterion proposed by Hill (1948, 1950) is
J ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3

2ðF þ Gþ HÞ

s
½F ðr̂22 � r̂33Þ2 þ Gðr̂33 � r̂11Þ2 þ Hðr̂11 � r̂22Þ2 þ 2N r̂2

12 þ 2Lr̂2
23 þ 2M r̂2

13�
1=2

� C1gðepÞ
_U
_U0

� �m

¼ 0

C1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðGþ HÞ

2ðF þ Gþ HÞ

s
ð2:13Þ
For F = G = H = 1 and N = L = M = 3 this yield function simplifies to the isotropic von Mises yield cri-
terion. For plane strain conditions, where r̂13 ¼ r̂23 ¼ 0, the two coefficients of anisotropy M and L are left
out of the considerations.
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Barlat-91: Based on the work of Hershey (1954) and Hosford (1972), Barlat et al. (1991) proposed the
higher order yield function
J ¼ W
2

� �1
d

� gðepÞ
_U
_U0

� �m

¼ 0

W ¼ ½S1 � S2�d þ ½S2 � S3�d þ ½S1 � S3�d
ð2:14Þ
where (see Barlat et al., 1997)
S1 ¼ 2
ffiffiffiffi
I2

p
cos

�h
3

� �
; S2 ¼ 2

ffiffiffiffi
I2

p
cos

�h� 2p
3

� �
; S3 ¼ 2

ffiffiffiffi
I2

p
cos

�hþ 2p
3

� �
ð2:15Þ

I2 ¼
1

3
½ð�f �F Þ2 þ ð�g�GÞ2 þ ð�h �HÞ2� þ 1

54
½ð�a�A� �c�CÞ2 þ ð�c�C � �b�BÞ2 þ ð�b�B� �a�AÞ2�

I3 ¼
1

54
½ð�c�C � �b�BÞð�a�A� �c�CÞð�b�B� �a�AÞ� þ �f �g�h�F �G �H � 1

6
½ð�c�C � �b�BÞð�f �F Þ2

þ ð�a�A� �c�CÞð�g�GÞ2 þ ð�b�B� �a�AÞð�h �HÞ2� ð2:16Þ

0 6 �h ¼ arccos
I3
I3=22

 !
6 p ð2:17Þ
with
�A ¼ r̂22 � r̂33; �F ¼ r̂23

�B ¼ r̂33 � r̂11; �G ¼ r̂31

�C ¼ r̂11 � r̂22; �H ¼ r̂12

ð2:18Þ
For �h ¼ 0 or �h ¼ p in Eq. (2.17) the derivatives oJ/or are singular. For these particular cases Eq. (2.14)
reduces to
U ¼ 2 � 3d I
d
2
2 for �h ¼ 0 or �h ¼ p ð2:19Þ
which are then directly used to evaluate the strain increments. If the coefficients of anisotropy, �a, �b, �c, �f , �g
and �h, are chosen to be unity and the exponent to d = 2, this criterion reduces to the von Mises yield sur-
face. For plane strain computations the two coefficients �f and �g are irrelevant.

2.2. Cohesive zone model

A traction–separation law proposed by Needleman (1987) for separation due to the normal stress on an
interface was generalized by Tvergaard (1990) to also account for separation due to tangential stresses. A
special version of this generalized model, for which the traction–separation law is governed by a potential,
was used by Tvergaard and Hutchinson (1993). Here, dn and dt denote the normal and tangential compo-
nents of the relative displacement of the crack faces across the interface in the zone where the fracture pro-
cesses are occurring (Fig. 2). When dcn and dct are critical values of these displacement components and a
single non-dimensional separation measure is defined as k ¼ ½ðdn=dcnÞ

2 þ ðdt=dct Þ
2�1=2 the tractions drop to

zero at k = 1. With r(k) displayed in Fig. 2, a potential from which the tractions are derived is defined as
Uðdn; dtÞ ¼ dcn

Z k

0

rðk0Þdk0 ð2:20Þ



Fig. 2. Specification of traction–separation relation.
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The normal and tangential components of the tractions acting on the interface in the fracture process zone
are given by
T n ¼
oU
odn

¼ rðkÞ
k

dn
dcn

; T t ¼
oU
odt

¼ rðkÞ
k

dt
dct

dcn
dct

ð2:21Þ
The peak normal traction under pure normal separation is r̂, and the peak shear traction is dcn=d
c
t

� 	
r̂ in a

pure tangential separation. The work of separation per unit area of interface is given by Eq. (2.20) with
k = 1, and for the separation function r(k) in Fig. 2 the work is
C0 ¼
1

2
r̂dcnð1� k1 þ k2Þ ð2:22Þ
It has been found by Tvergaard and Hutchinson (1992, 1993) that the details of the shape of the separation
law are not very important, and that the two most important parameters characterizing the fracture process
in this model are C0 and r̂.

2.3. Small scale yielding formulation

The numerical computations for conditions of small scale yielding are carried out for a circular region
with initial radius A0. Plane strain conditions and remote mode I loading are assumed. The x1-axis is in the
crack plane and the initial crack-tip is located at x1 = x2 = 0 (see Fig. 3). The traction–separation relation
Fig. 3. Mesh used for some of the crack growth analyses.
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used to model the fracture process (Fig. 2) is specified everywhere on the boundary x1 > 0, x2 = 0 of the
region analysed, while zero tractions are specified for x1 6 0, x2 = 0.

According to the small strain linear elastic solution the in-plane stress components near the crack-tip are
of the form
rab ¼
Kffiffiffiffiffiffiffi
2pr

p fabðhÞ ð2:23Þ
for mode I loading, where (r,h) are polar coordinates and K is the amplitude of the singular stress field. The
displacements are specified on the outer semicircular boundary according to the singular K-field solution
around the crack-tip. Thus, the loading is applied by incrementally increasing the amplitude K for the dis-
placements on the semicircular boundary. The value of the J-integral has been calculated on a number of
contours around the crack-tip and good agreement with the prescribed amplitude K of the edge displace-
ments has been found.

Two reference quantities K0 and R0 are introduced for the presentation of the results
K0 ¼ ½EC0=ð1� m2Þ�1=2 ð2:24Þ

R0 ¼
1

3p
K0

r0

� �2

¼ 1

3p
EC0

ð1� m2Þr2
0

ð2:25Þ
Here, K0 represents the mode I stress intensity factor needed to advance the crack when plastic dissipation
is negligible, i.e. the stress intensity factor needed to supply just the work of the fracture process C0. The
reference length R0 scales with the size of the plastic zone when K ffi K0.

2.4. Numerical procedure

The numerical crack growth procedure follows that of Tvergaard and Legarth (2004). Thus, the finite-
element solution is carried out in the context of an updated Lagrangian formulation (McMeeking and Rice,
1975) based on the principle of virtual work. Disregarding body forces the incremental form of the principle
of virtual work in terms of the first Piola–Kirchhoff stress, sij 5 sji, is (Yamada and Hirakawa, 1978; Tverg-
aard, 1990; Yamada and Sasaki, 1995)
Dt
Z
V
_sijdvj;i dV þ Dt

Z
SI

f _T ndð _dnÞ þ _T tdð _dtÞgdS

¼ Dt
Z
S

_T idvi dS �
Z
V
sijdvj;i dV �

Z
S
T idvi dS þ

Z
SI

fT ndð _dnÞ þ T tdð _dtÞgdS
� �

ð2:26Þ
where Ti = sjinj, V is the volume, S is the surface and SI denotes the debonding interface, Ti are the nominal
tractions and dvi are the virtual velocities in the current deformed configuration. Therefore, sij is identical to
rij, but _sij is not equal to _rij, i.e. _s ¼ _r� Lrþ trðLÞr. The bracketed terms in Eq. (2.26) are equilibrium
correction terms.

An example of the mesh used for the computations is shown in Fig. 3. A uniform mesh region is used in
the range where crack growth is studied with the length of one square element denoted by D0, and the initial
crack-tip is located at x1 = 0. The elements used are quadrilaterals each built-up of four triangular, linear
displacement elements, and 120 · 6 quadrilaterals are used in the uniform mesh along the interface. These
crossed triangles are known to have good accuracy in elastic–plastic problems, as they avoid locking due to
near incompressibility (Nagtegaal et al., 1974). The outer radius of the region analysed is chosen to be
A0/D0 = 800000, in order that the plastic zone size should not exceed A0/10.

The boundary conditions prescribed on the outer edge are the displacements corresponding to the sin-
gular K-field. During the initial part of the crack growth resistance curve an increment of K is prescribed,
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but when K approaches its asymptote, a Rayleigh–Ritz finite-element method (Tvergaard, 1976) is needed
to ensure a monotonic increase in displacement differences across the crack tip. In each increment the time
step, Dt, for the next increment is corrected according to ð_epÞmax � Dt 6 c1 and ð _kÞmax � Dt 6 c2, where the
label max refers to the maximum effective plastic strain rate in any triangular element, or the maximum rate
of the debonding separation measure k, at the current increment. The values of the constants c1 and c2 are
in several computations chosen as c1 = 0.02 and c2 = 0.004, but in some cases smaller values of the con-
stants have been needed, to avoid numerical instabilities.

In the crack growth solutions it is known (Tvergaard and Hutchinson, 1992) that good numerical con-
vergence is obtained if the length of the process region exceeds two to three times D0. This is ensured in the
present analyses.
3. Results

The crack growth analyses here, for materials with the non-normality flow rule, consider the same two
anisotropic metals studied in Tvergaard and Legarth (2004). One is an aluminium alloy Al 7108-T7 for
which Moen et al. (1998) (see also Legarth et al., 2002a,b) used a fitting in terms of Hill-48. Here, in the
yield function (2.13) the parameter values used are
F ¼ 0.699; G ¼ 3.33; H ¼ 1; N ¼ 9.60 ð3:1Þ
Additional material parameters, used to fit a uniaxial tensile test with only r11 5 0, are r0/E = 0.003,
e0 = 0.005, m = 0.3, n = 0.1, m = 0.005 and _U0 ¼ 0.002s�1. In the traction–separation law the values
dcn=d

c
t ¼ 1, dcn ¼ 0.1D0, k1 = 0.15 and k2 = 0.50 are used, while r̂=r0 is varied.

The other material is an aluminium alloy Al 2090-T3 modelled by Legarth (2004) in terms of Barlat-91.
In the yield function (2.14)–(2.19) the following parameter values are used
�a ¼ 1.3392; �b ¼ 1.1650; �c ¼ 0.8111; �h ¼ 1.2262 and d ¼ 8 ð3:2Þ
The additional material parameters used in this case are the same as those listed below (3.1), so that for
uniaxial tension with only r11 5 0 the same stress–strain curve is modelled.

The parameter identification for the two yield functions given above in (3.1) and (3.2) has been described
in detail by Moen et al. (1998) and Legarth and Kuroda (2004), the latter based on experiments presented in
Barlat et al. (2003). In Barlat et al. (2003) the yield stresses have only been shown normalized by that in the
rolling direction. Therefore, in the present studies we have chosen to use the same value, r0/E = 0.003, for
both materials. For the strain hardening, strain rate sensitivity and traction–separation law we do not have
experimentally determined values in the present study. Therefore, reasonable values have been chosen, and
in this respect the analyses here represent a parametric study.

For the two materials, plane strain tension in the x1-direction has been used by Tvergaard and Legarth
(2004) to illustrate the variation of the plane strain yield stress in the x1-direction with the initial angle of
orientation of the anisotropy. In both cases the lowest yield stress was found for the orientation h0 = 45�,
and it was also found that for Al 2090–T3 (Barlat-91) the yield stress never exceeds the isotropic von Mises
yield stress, whereas Al 7108-T7 (Hill-48) depicts a yield stress above as well as below the isotropic yield
stress.

Fig. 4 shows crack growth resistance curves for the Hill-48 material, with the parameter values specified
by (3.1), where Da denotes the length of the crack growth. The angle of inclination of the crack plane rel-
ative to the principal axis of anisotropy is taken to be h0 = 45�, and the value of the peak stress to flow
stress ratio is taken to be, r̂=r0 ¼ 3.25. These curves are compared with corresponding curves for the Mises
material. In both cases the crack growth resistance curves have been calculated for the materials with the



Fig. 4. Interface crack growth resistance curves for the Hill-48 material, Eq. (2.13), with r̂=r0 ¼ 3.25 and h0 = 45�, for normality of
plastic flow and for the non-normality flow rule. Corresponding curves for Mises material are shown for comparison.

2168 V. Tvergaard, B.N. Legarth / International Journal of Solids and Structures 43 (2006) 2160–2173
normality flow rule, as well as for non-normality with c = 2 and wp
crit ¼ 20�. Both for the Hill-48 materials

and for the Mises materials the curves in Fig. 4 show that the maximum levels of fracture toughness on the
resistance curves are reduced when the non-normality flow rule is applied. Furthermore, the curves for the
Mises materials are above those for Hill-48.

Fig. 5 shows similar crack growth resistance curves for h0 = 0� and h0 = 90�, where crack growth occurs
parallel to one of the orthotropic axes. Again, the curves for the Mises material are included for compar-
ison. It is seen that h0 = 90� leads to higher toughness levels than those found for h0 = 0�, and in both cases
the toughness levels are above those found for h0 = 45�, as is seen by comparison with Fig. 4. Also in the
cases of Fig. 5 the fracture toughnesses predicted for the normality flow rule are higher than those for non-
normality.
Fig. 5. Interface crack growth resistance curves for the Hill-48 material, Eq. (2.13), with r̂=r0 ¼ 3.25 and h0 = 0� or h0 = 90�.
Corresponding curves for Mises material are shown for comparison.
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It is assumed in the present computations that the growing crack remains in the initial crack plane, even
though the stress and strain fields near the crack-tip are not generally symmetric for any value of h0. How-
ever, for h0 = 0� and for h0 = 90� there is exact symmetry, and for h0 = 45� the plastic regions are essentially
symmetric, so in the cases considered here the assumption of straight ahead crack growth is not
unreasonable.

The limiting value of K attained as the crack grows to approach a steady-state is denoted Kss. Some of
the predicted resistance curves go slightly downwards after reaching the maximum, so that in these cases Kss

is approached from above. However, as in the previous studies, the values Kss are here identified as the peak
values of the resistance curves. In Fig. 6 the dependence of Kss/K0 on the value of r̂=r0 is shown for cases
corresponding to the four resistance curves in Fig. 4, where the resistance curves are plotted for the value
r̂=r0 ¼ 3.25. It is seen in Fig. 6 that the steady-state fracture toughnesses for the normality flow rule remain
higher or practically identical to those for non-normality in the whole range studied. Furthermore, for
increasing values of r̂=r0, the steady-state fracture toughnesses corresponding to the Mises material grow
well above those for the Hill-48 material.

Similar curves for the dependence of Kss/K0 on the value of r̂=r0 are shown in Fig. 7 for cases corre-
sponding to the six resistance curves in Fig. 5. The behaviour observed is mostly analogous to that in
Fig. 6, but a noticeable difference is that in the case of Hill-48 with h0 = 0� the curve for the non-normality
flow rule is a little above that for normality in a rather broad interval. It is also noted that the curve for
h0 = 0� with normality grows well above that for h0 = 90� with non-normality in the range of larger values
of r̂=r0.

The calculated resistance curves depend on the rate of loading, since the material is described as elastic–
viscoplastic. In the initial parts of the resistance curves the rate of increase of the stress intensity factor K is
taken to be _K ¼ K0=tR, where tR is a reference time. When the resistance curve flattens out, approaching the
maximum value of K, the value of _K will have to approach zero, so in this range the rate of crack growth is
Fig. 6. Steady-state interface toughness vs. peak stress in the cohesive zone model for the Hill-48 material, Eq. (2.13), when h0 = 45�.
Corresponding curves for Mises material are included for comparison.



Fig. 7. Steady-state interface toughness vs. peak stress in the cohesive zone model for the Hill-48 material, Eq. (2.13), when h0 = 0� or
h0 = 90�. Corresponding curves for Mises material are included for comparison.
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specified such that the rate of crack opening at the crack-tip is _dn ¼ dcn=tR. In the present computations the
value of the reference time is chosen as tR ¼ 0.2= _U0. For the low value of the rate-hardening exponent m
applied here it is found that the sensitivity to the value of tR is quite small.

The length ‘ of the fracture process region in the cohesive zone during crack growth may be character-
ized by the distance from the crack-tip, where k = 1 in Fig. 2, to the point ahead of the crack-tip where
k = k1. Good resolution and very little mesh dependence is found when the value of ‘ is several times
the length D0 of a square element in the uniform mesh region (Fig. 3b). This requirement is satisfied in
the present computations.

The sensitivity to the values of the parameter c or the angle wp
crit is studied in Fig. 8, where two of the

curves are identical to the curves for Hill-48 shown in Fig. 6. For c = 2 it is seen that a reduced value of
the critical angle, wp

crit ¼ 10�, gives higher fracture toughness, more like that found for the normality flow
rule, while an increased value, wp

crit ¼ 30�, gives lower fracture toughness. For c = 0 the direction of the
plastic strain rate would coincide with the deviatoric value of the total strain rate, according to (2.10)
and (2.11), while increased values of c allow for larger deviations between these directions. In Fig. 8, for
wp

crit ¼ 20� a comparison is made between predictions for c = 2 and c = 4, and it is found that the increased
value gives only slightly lower fracture toughness.

Resistance curves have also been computed for the Barlat-91 material, with the parameter values spec-
ified by (3.2), and with focus on h0 = 45�, as in Fig. 4. Based on these results Fig. 9 shows the variation of
the steady-state values Kss/K0 vs. the peak stress, r̂=r0, in the traction separation law. As in Fig. 6 the stea-
dy-state toughnesses are shown both for the normality flow rule and for non-normality with c = 2 and
wp

crit ¼ 20�, and also here results for the Mises material are included for comparison. As was also found
by Tvergaard and Legarth (2004), the Barlat-91 material shows generally a higher toughness than that
found for the Mises type material, at a given value of r̂=r0, whereas the trend is the opposite for Hill-48
in Fig. 6. This was explained by the fact that in uniaxial plane strain tension in different directions the
Hill-48 material yields at stresses that are mostly higher than that for the Mises material, while the



Fig. 9. Steady-state interface toughness vs. peak stress in the cohesive zone model for the Barlat-91 material, Eqs. (2.14)–(2.19), when
h0 = 45�. Corresponding curves for Mises material are included for comparison.

Fig. 8. Steady-state interface toughness vs. peak stress in the cohesive zone model for the Hill-48 material, Eq. (2.13), when h0 = 45�.
Comparison of predictions for different values of the angle wp

crit and the parameter c in (2.11).
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Barlat-91 material yields at stresses that are mostly lower. As in the previous figures the fracture tough-
nesses predicted by the non-normality flow rule are lower than those for normality.
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4. Discussion

The non-normality flow rule for an anisotropic solid with a smooth yield surface, proposed by Kuroda
and Tvergaard (2001a), was shown to give good agreement with predictions of polycrystal plasticity, where
a vertex-type flow rule governs. For predictions of plastic instabilities a vertex has a big effect and it was
shown, both for failure by necking in biaxially stretched metal sheets and for shear band development
under plane strain conditions (Kuroda and Tvergaard, 2001b), that the phenomenological model with
non-normality represents this effect. Crack growth in a ductile material is another case where a vertex-type
flow rule is expected to have a large effect, since the movement of the crack-tip plastic zone during crack
extension gives rise to significant deviations from a proportional stress history. Based on J2 corner theory
(Christoffersen and Hutchinson, 1979) the reduced resistance to non-proportional deformation in the case
of a vertex has been studied by Dean and Hutchinson (1980). They considered crack growth under Mode
III conditions and found different effects of the vertex when a critical strain criterion or a crack-tip opening
criterion was used for crack growth.

The traction–separation law used here to model the fracture process gives a stress based crack growth
criterion and thus differs from the criteria discussed by Dean and Hutchinson (1980). It is found that at prac-
tically all the parameter values considered the non-normality flow rule gives a smaller value of the steady-
state fracture toughness Kss than that found using standard normality. First of all, this effect is shown by
the Mises material results, which are included in the figures for comparison with the curves predicted for
plastic anisotropy. But with anisotropy the same tendency is found both for the Hill-48 material and the
Barlat-91material, except for a few parameter intervals, where the differences are rather small between the frac-
ture toughnesses with or without normality of plastic flow. Thus, the conclusion based on the present crack
growth model is that the strongly non-proportional stressing inherently involved in crack growth gives less
fracture toughness when the constitutive model applied is less resistant to non-proportional deformation.

The sensitivity to the maximum angle of deviation wp
crit from normality has been tested in Fig. 8 for the

Hill-48 material. Consistent with the tendencies mentioned above, it is found that the reduction of the frac-
ture toughness below that found for the normality flow rule is larger the larger the value of wp

crit.
The cases analysed here are for crack growth parallel to the principal axes of the anisotropy, i.e. for

h0 = 0� and h0 = 90� where there is exact symmetry, or for h0 = 45� where the plastic regions are close
to symmetric (Legarth et al., 2002a). Therefore, the assumption that the cracks grow straight ahead is as-
sumed to give a good approximation in the cases studied.

As has also been found in previous investigations (Tvergaard and Hutchinson, 1992, 1993) the predicted
steady-state fracture toughness is very sensitive to the value of the peak stress in the traction separation law,
i.e. to the value of the ratio r̂=r0. Furthermore, the curves for the steady-state fracture toughness Kss/K0 vs.
r̂=r0 confirm that, as long as r̂=r0 is so small that plasticity at the crack-tip plays only a minor role, the
fracture toughness depends only on the local work of separation C0 on the crack plane.
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